Monday, 11 August 2025

An Experience Alignment Architecture: from Space E to Non‑Causal Intelligence -Formal

 An Experience Alignment Architecture: from Space E to Non‑Causal Intelligence -Formal

  • Experience space EE — a (possibly high-dimensional) vector space of candidate experiences xEx \in \mathcal{E}. Concretely: embeddings of text, images, actions, sensory states, etc.
    Example: ERd\mathcal{E} \subseteq \mathbb{R}^d.

  • Archetype AA — an internal reference. Can be:

    • a fixed vector aRda \in \mathbb{R}^d (prototype),

    • a set/distribution of vectors A\mathcal{A} (multi-modal archetype),

    • or a parameterized model fθ()f_\theta(\cdot) that maps context to a target representation.

  • Alignment index μ(x,A)\mu(x, A) — a scalar score measuring how well experience xx aligns to AA. This is the central function we must define precisely. Examples: cosine similarity, negative energy, or a learned scoring network.

  • Selector SS — operator that selects one or more experiences from E\mathcal{E} maximizing μ\mu. Formal: S(E,A)=argmaxxEμ(x,A)S(\mathcal{E},A) = \arg\max_{x \in \mathcal{E}} \mu(x,A). In practice: top-k, stochastic sampling proportional to exp(βμ)\exp(\beta \mu), MCMC, or beam search.

  • Projector PP — maps selected internal experience(s) to an output for a downstream subsystem or user (rendering, language, actuator command). Could be identity, decoder, or a transformation network.



  • Formal definitions / candidate choices

    1) Experience space

    Let experiences be vectors: xRdx \in \mathbb{R}^d. If raw data is non-vector (text, images), use encoder gϕg_\phi so x=gϕ(raw)x = g_\phi(\text{raw}).

    2) Archetype

    Options:

    • Prototype vector: aRda \in \mathbb{R}^d

    • Distribution: aN(μA,ΣA)a \sim \mathcal{N}(\mu_A, \Sigma_A)

    • Conditional archetype: a=fθ(c)a = f_\theta(c) where cc is context (user state, prompt).

    3) Alignment index μ\mu

    Begin with simple, interpretable choices and show how to extend:

    • Cosine similarity:

    μcos(x,a)=xaxa\mu_{\cos}(x,a) = \frac{x \cdot a}{\|x\|\|a\|}
    • Gaussian kernel / RBF:

    μrbf(x,a)=xa2/(2σ2)\mu_{\text{rbf}}(x,a) = -\|x-a\|^2 / (2\sigma^2)

    (higher is better if you negate the distance).

    • Learned scorer (neural):

    μθ(x,a)=hθ([x;a;xa;xa])\mu_\theta(x,a) = h_\theta([x; a; x\odot a; |x-a|])

    where hθh_\theta outputs a scalar (sigmoid or raw score).

    • Energy-based:

    μE(x,a)=Eθ(x,a)\mu_E(x,a) = -E_\theta(x,a)

    You can combine: μ=αμcos+(1α)μθ\mu = \alpha \mu_{\cos} + (1-\alpha)\mu_\theta.

    4) Selector strategies

    • Deterministic argmax: x=argmaxxEμ(x,a)x^* = \arg\max_{x \in \mathcal{E}} \mu(x,a).

    • Top-k + diversity: take top-k then apply a diversity penalty (e.g., determinantal point process or max-marginal relevance).

    • Softmax sampling (Boltzmann):

    p(x)exp(βμ(x,a))p(x) \propto \exp(\beta\mu(x,a))
    • MCMC / Metropolis-Hastings for continuous E\mathcal{E}.

    • Generative sampling: train generator Gψ(z,a)G_\psi(z,a) then search latent zz to maximize μ(Gψ(z,a),a)\mu(G_\psi(z,a),a).

    5) Projector

    • Identity: return the selected xx.

    • Decoder: y=decoderξ(x)y = \text{decoder}_\xi(x) (text generator / image renderer / actuator translator).

    • Filter: apply constraints or safety overlays to xx before output.


    Learning / training objectives

    You’ll want μ\mu to match human/architectural intent. Approaches:

    1. Supervised (paired)
      If you have pairs (xi,ai,yi)(x_i, a_i, y_i) with label yy (aligned/not), train μθ\mu_\theta via cross-entropy or regression.

    2. Contrastive (self-supervised)
      Define positive pairs (experience aligned with archetype) and negatives. Use InfoNCE:

    L=logexp(μ(x+,a)/τ)jexp(μ(xj,a)/τ)\mathcal{L} = -\log \frac{\exp(\mu(x^+,a)/\tau)}{\sum_j \exp(\mu(x_j,a)/\tau)}
    1. Reinforcement Learning (RL)
      Treat μ\mu as intrinsic reward. Policy π\pi produces experiences; maximize expected μ\mu.

    2. Energy-based / score matching
      Model an energy over (x,a)(x,a) and train via contrastive divergence or noise-contrastive estimation.

    3. Meta-learning / few-shot
      Learn fθf_\theta that produces an archetype vector aa from a few examples.


    Evaluation metrics

    • Alignment accuracy (if labeled): fraction of times selector picks human-preferred experience.

    • Human preference A/B tests: pair outputs from baseline vs. alignment model.

    • Diversity: average pairwise distance among top-k selections.

    • Robustness / Stability: how sensitive is selection to small perturbations of aa or inputs.

    • Calibration: reliability of μ\mu as a probability (if normalized).


    Toy implementation (Python-style pseudocode)

    python
    # Simple toy: E = set of vectors, Archetype a is a vector, # mu = cosine similarity, Selector = top-k, Projector = identity import numpy as np from numpy.linalg import norm def cosine(x, a): return (x @ a) / (norm(x) * norm(a) + 1e-9) # toy experience set E = np.random.randn(1000, 64) # 1000 candidate experiences a = np.random.randn(64) # archetype vector # compute alignment scores scores = np.array([cosine(x, a) for x in E]) # select top k k = 3 top_idx = np.argsort(scores)[-k:][::-1] selected = E[top_idx] # projector: here identity (but could be a decoder) for i, x in enumerate(selected): print(f"Rank {i+1}, score={scores[top_idx[i]]:.4f}")

    Extending to learned scorer

    • Replace cosine with a small MLP: mu_theta(x,a) = MLP([x, a, x*a, |x-a|]).

    • Train with contrastive pairs or human labels.


    Example experiment plan (practical)

    1. Dataset & encoder

      • Pick domain (dialogue snippets, images, short music clips).

      • Use pre-trained encoder (CLIP for images/text, Sentence-Transformers for text).

    2. Define archetypes

      • Start with prototype vectors: e.g., “Harmony” = average embedding of 200 curated positive examples.

      • Or learn a small mapping from textual archetype label to vector using few examples.

    3. Baseline scorer

      • Cosine similarity to prototype. Evaluate with small human study.

    4. Upgrade scorer

      • Train lightweight MLP with contrastive loss.

    5. Selector

      • Start deterministic (argmax) then evaluate sampling vs. argmax for diversity.

    6. Projector

      • Use LM or image decoder to render selected internal experience.

    7. Human evaluation

      • Rate alignment, novelty, coherence.


  • No comments:

    Post a Comment